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SUMMARY 

A new combinative method of boundary-type finite elements and boundary solutions is presented to study 
wave diffraction-refraction and harbour oscillation problems. The numerical model is based on the 
mild-slope equation. The key feature of this method is that the discretized matrix equation can be formulated 
only by the calculation of a line integral, since the interpolation equation which satisfies the governing 
equation in each element is used. The numerical solutions are compared with existing analytical, 
experimental, observed and other numerical results. The present method is shown to be an effective and 
accurate method for water surface wave problems. 
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INTRODUCTION 

The demands of the planning and construction of various offshore and coastal structures have 
increased in recent years. Consequently, the analysis of wave diffraction-refraction problems and 
harbour oscillation problems is becoming more important from the point of view of the planning of 
offshore and coastal structures. Various numerical methods have been presented to analyse water 
surface wave problems. The eigen function expansion method,',' the finite difference m e t h ~ d , ~  the 
finite element method4 and the boundary element m e t h ~ d ~ - ~  have been developed. However, the 
finite difference method and the finite element method have difficulty in considering the 
Sommerfeld radiation condition. Recently, some combinative methods based on the finite element 
method have also been developed to overcome this difficulty, since the finite element method can 
easily treat the arbitrary shape and variable water depth. These combinative methods are roughly 
classified into three types with respect to the treatment of the radiation condition. Chen and Mei," 
Zienkiewicz et aZ.," Houston," Tsay and LiuI3 and Skovgaard et ~ 1 . ' ~  presented the combinative 
method of finite elements and boundary solutions. This method is called the hybrid finite element 
method. Berkhoff l 5 * I 6  and Zienkiewicz et a1.I7 presented thecombinative method using boundary 
elements. Battess and Zienkiewicz,18 Bettess et al.' 9,20 and Zienkiewicz et al." presented the 
combinative method using infinite elements. However, the principal objective of these methods was 
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how to treat the radiation condition rationally in the computation rather than the improvement of 
solutions in the finite element region. More recently, the present presented a new 
finite element method which is more accurate than the conventional finite element method. This 
method introduced the concept of the boundary element method and is referred to as the 
boundary-type finite element method. 

This paper presents a new combinative method based on the boundary-type finite element 
method. The key feature of this method is that the discretized matrix equation can be formulated 
only by the calculation of a line integral, since the interpolation equation which satisfies the 
governing equation in each element is used. The mild-slope equation is employed for the governing 
equation. This equation reduces a three-dimensional problem to a two-dimensional problem 
where the water depth is assumed to be slowly varying in space. Futhermore, this equation is 
applicable to a wide range of wave frequency. The present method has been applied to wave 
diffraction-refraction by island and offshore structures and to harbour oscillation problems. The 
computed results are compared with existing analytical, experimental, observed and other 
numerical solutions. 

BASIC EQUATIONS 

Consider a wave field as shown in Figure 1. Assuming steady state surface waves with infinitesimal 
amplitude on a slowly varying water depth, the surface displacement y~ may be described by the 
mild-slope equation' 5*2s-27 

2 c, V.(CC,Vq)+o -7=O in R, 
C 

where C is the phase velocity, C, is the group velocity and o is the angular frequency. These 
characteristic values are determined by the dispersion relation 

o2 = gk  tanh kh, (2) 
where g is the gravitational acceleration, k is the wave number and h is the water depth. 

The following conditions are introduced on the boundary: 

q , n = a ~ / a n = O  on r,, 
lim r1/2(qsc,r - ikqsc) = 0 on rm,, 
r - tm  

(3) 
(4) 

where n means the normals to the boundary, r is the distance from structures, i is the imaginary 
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( a )  offshore problem ( b )  nearshore problem 

Figure 1. Definition of offshore and nearshore problems 
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unit, qsc is the scattered wave, Ts is the boundary of the coastline and Tm is the infinite boundary. 
The wave field R is divided into two domains: the inner domain Ri with variable water depth and 

the outer domain R, with constant water depth. On the boundary of r,, the following continuity 
conditions should be satisfied 

where 
Two cases are considered (Figure 1): offshore problems and nearshore problems. In the case 

of offshore problems, the surface displacement q is assumed to be the sum of the incident wave 
qin and scattered wave qSc: 

V = Vin + V s c ,  (6) 

denotes the surface displacement within the outer domain. 

where vin is given by 
m 

n = O  
qin = A 1 E,i"J,,(kr)cos n(O - e,,), (7) 

in which A denotes incident wave amplitude, E, is the Neumann number, J ,  is the Bessel function of 
order n and Bin is the incident wave angle. 

On the other hand, in the case of nearshore problems, the surface wave displacement is assumed as 
follows: 

where 
m 

qin + q,, = 2A E,i"J,(ki)cos noin cos n0, 
n = o  

in which qre denotes the reflected wave displacement. 

COMBINATIVE METHOD USING BOUNDARY-TYPE FINITE 

For efficient numerical computation, the boundary-type finite element method is employed in the 
inner domain Ri and the boundary solution method, first presented by Chen and Mei," is 
introduced in the outer domain Ro to deal with the radiation condition. 

The scattered wave within the outer domain, f s c ,  must satisfy the Helmholtz equation and the 
radiation condition. In the case of offshore problems, as shown in Figure 1 (a), the scattered wave 
can be represented by the Fourier-Bessel expansion as 

m 

fsc  = a,H,(kr) + 1 H,(kr)(a, cos n0 + /I,, sin no), 
n =  1 

where an and /I, denote the unknown constants and H, is the Hankel function of the first kind of 
order n. 

On the other hand, in the case of nearshore problems, as shown in Figure 1 (b), the scattered wave 
can be represented as 

m .- 

f s c =  1 anH,(kr)cosnO, 
n = O  

where a,, denotes the unknown constants. 
For the discretization of the spatial variable r, the variational principle can be introduced in the 

formulation. The variational function to be minimized for the given boundary value problem is 
expressed as 
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rI = ni + no7 
r I i = i l Q i (  CCg(Vq)2 - w 2 2 q 2 ) d Q ,  C 

no = lrC ccgc(3v.w - q5c)v.n - + ~ s c q i r , n l  d r ,  

in which Hi and no are the variational functions of the inner and outer domain respectively and 
qir denotes the sum of the incident and reflected waves. 

The wave field in the finite element region is divided into a finite number of elements, and the 
variational function of ni can be written as 

where e denotes the eth finite element and Ne is the total number of elements. Integrating the first 
term by parts and introducing the relation w = Ck, the variational function can be transformed 
into the form 

where rig denotes the boundary of eth finite element. Assuming that the interpolation equation for 
surface displacement satisfies the Helmholtz equation in each finite element, the variational 
function can be formulated only by the line integral as follows: 

For the interpolation equation, a trigonometric function series is employed based on a three- 
node triangular element: 

where y1 y 2  and y 3  are constants and k is the wave number which takes the mean value of each 
element. This interpolation equation satisfies the Helmholtz equation. Figure 2 shows typical 
forms of the interpolation function in cases where the ratio between the element length s and the 

s / L = O . l  s/L=O. 3 3  

Figure 2. Typical form of the interpolation function 
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wavelength L is 0.1 and 0.33. From this figure, it can be seen that the shape of the interpolation 
function varies according to the value of the wave number and the boundary-type finite element is 
the C, non-conforming element. The value of CC, is approximated by using linear interpolation. 

Introducing the interpolation equation (16) into (15) and integrating the term, equation (15) can 
be written in matrix fom:22-24 

Hi = i{q)TCKII {q} , (17) 

where [Kl] denotes the global stiffness matrix. 
On the other hand, the variational function in the outer domain can be expressed as 

n o  = S, ccg[(iii,c - qsc)(qsc,n + qir,n) - + q s c q i r , n l  d r  

r r r 

For simplicity, the boundary of TC is assumed to be a circle; then the integral of the first term can be 
evaluated analytically. The boundary of Tc is divided into a finite number of line segments and 
linear interpolation is employed for the interpolation of surface displacement. Finally, 
equation (18) can be written as10*26 

n 0 = 4 { ~ ) ~ C K z l { ~ }  + {$ITCK31{CL) -{QiIT{FII - { Q Z } ~ { P I >  (19) 
where (p} denotes the unknown constant in the expansion of the outer domain and {$} is the 
surface displacement of the nodal point on the boundary Tc. 

Summarizing, the variational function to be minimized can be written in the form 

n = ni +no 
= ~ { V } ' C K ~ I ( V }  + ~ ( C L } ~ C K ~ I { C L )  + {$}TCK31{PL) - {Qi>'{li> -{QzIT{p}. (20) 

Minimizing (20) gives 

an/aqi = 0, i = i ,2 , .  . . , E,  

an/api=o, i = 1 , 2  ,..., M, 

where E and M are the total number of nodal points and the total number of coefficients in the 
expansion of the outer domain, respectively. From equations (21) and (22), a set of linear complex 
algebraic equations for {q} and {p} is obtained: 

where [Kl] is the tridiagonal matrixof E by E,[K2] is the diagonal matrix of M by M and 
[K3] is the full matrix of P by M ;  here P is the total number of nodal points on the boundary 
r,. Eliminating the constants {p}, the matrix equation for {q) can be derived in the form 

CK1 { v }  = {Q>,  (25) 

where [K] is the symmetric matrix. The band matrix method is used to solve equation (25). 
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NUMERICAL EXAMPLES 

In order to show the validity and efficiency of the present combinative method, several 
computations have been carried out and compared with the analytical, experimental and observed 
results. The total number of coefficients in the expansion of the outer domain is assumed to be 
n = 10 for all computations in this paper. 

Ofshore problems 

First, the classical Homma i ~ l a n d ~ * ' ~ ~  is considered, as shown in Figure 3. The present method is 
applied to the analysis of the wave amplitude distribution around a circular island on a parabolic 
shoal. The exact solution for this problem have been obtained by Jonsson et d 3 O  Figure 4 shows 
the finite element idealization and computed wave amplitude distribution for as incident wave 
period of 480 s. The total numbers of finite elements and nodal points are 720 and 396 respectively. 
The incident wave angle is assumed to be Oi, = 0". Table 1 shows the difference between exact and 

Figure 3. Circular island on a parabolic shoal 

Figure 4. Finite element idealization and computed relative wave amplitude when the incident wave period is 8 min 
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Table 1. Comparison of computed relative wave amplitude and phase function 

Method O = 0 "  O=30" O=60" 0=90° O =  120" O=150° O=180" XllineI 

Amplitude Exact 2.3708 1.7663 15067 2.6885 3.3686 3.4553 3.4193 
FEM - 0.11 18 - 0.0373 - 0.0167 - 0.0625 - 0.0886 - 0.0193 - 0.0333 0.3695 
BFEM + 0.0242 + 0-0297 + 0.0083 + 00095 + 0.0034 + 00037 + 0-0077 00865 

Phase Exact 151.69 134.42 60.33 16.40 355.95 341.70 335.92 
FEM - 3.81 - 3.96 - 1.14 - 1.10 - 1.34 - 1.12 -084 13'31 
BFEM -0.66 -0.29 + 1.26 +090 + 1.19 + 1.80 +2.14 8.24 

computed results for the relative wave amplitude and phase function along the coastline. In this 
table, Exact denotes the exact solution, FEM the conventional method using conforming linear 
triangular elements and BFEM the present method. For FEM solutions, the maximum amplitude 
error is 0.1118 at 8 = 0", which corresponds to 4.72%, the relative mean error is 2.06% and the 
relative mean error of phase is 1.90". On the other hand, for BFEM solutions, the maximum 
amplitude error is 00297 at 8 = 30", which corresponds to 1.68%, the relative mean error is 058% 
and the relative mean error of phase is 1.18". From Table 1, it can be seen that the present method is 
in better agreement with the exact solution than is the conventional method, particularly at the rear 
side of the island. 

Second, an elliptic island on a circular base is considered, as shown in Figure 5. Figure 6 shows 
the finite element idealization for an elliptic island. The total numbers of finite elements and nodal 
points are 288 and 180 respectively. The bottom slope violates the mild-slope assumption. The 
computed results of the relative wave amplitude and phase function along the coastline are 
compared with the 3D finite element solutions obtained by Yue et aL31 Figures 7 and 8 illustrate 
the comparison when the incident wave angle is 8, = 180" and ei, = 270" respectively. The incident 
wave number is assumed to be ka = 1.0. The maximum error is roughly 10%. The discrepancies 
could be attributed to the violation of the mild-slope assumption. However, these results are 
acceptable in terms of the accuracy requirements of many engineering applications. 

Nearshore problems 

The present method is applied to harbour oscillation problems. To test the present method, a 
rectangular harbour of dimensions 2h long by h wide by h deep, where h is the water depth, is 
considered, as shown in Figure 9, which was first studied by M a t t i ~ l i . ~  Figures 9 and 10 show the 
finite element idealization and water depth diagram for the rectangular harbour. The total 
numbers of finite elements and nodal points are 116 and 80 respectively. Figure 11 illustrates the 
computed relative wave amplitude at the centre of the backwall (point P) versus kh for a constant 
water depth (Figure 10(a)). The computed results are well in agreement with the exact solution 
obtained by Mattioli. 

To test the present method further, it is applied to a harbour with a slowly varying water depth 
(Figure 10(b)). Figure 12 shows the computed relative wave amplitude at the point P, compared 
with the existing experimental and other numerical results. In this figure, the full curve represents 
the computed results obtained by the present method, the broken curve represents the 2D 
boundary element solution by Mattioli and the chain curve and full circles are the 3D boundary 
element solution and experimental results by Yoshida and Ijima.32 The experimental results are 
measured at point M using capacity-type wave gauges. The 2D boundary element solutions are 
different from the other numerical and experimental results, since the shallow water theory is used 
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Figure 6. Finite element idealization for an elliptic island 

in the formula ion. The computed results obtained by the present method are in good agreemen . 
with the experimental and 3D boundary element solutions. The computational time for a single 
wave period was about 0.35 s using the HITAC M280H of the University of Tokyo. As reported in 
Yoshida and Ijima,32 the 3D boundary element run required about 6 s computional time using the 
FACOM M200, which is a similar system. From this, it can be seen that the present method based 
on the mild-slope equation is effective for the analysis of surface waves on slowly varying water 
depth. 

Finally, the present method is applied to a real port. For the numerical study, Sendai new port is 
chosen which is located on the northeastern side of Honshyu island, Japan. The port faces the 
Pacific ocean and the area is famous for the frequent occurrence of tsunami waves. Figures 13 and 
14 show the finite element idealization and water depth diagram for Sendai new port. The total 
numbers of finite elements and nodal points are 497 and 318 respectively. The computed results of 
the relative wave amplitude at the points P and Q are compared with the observed results33 versus 
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Figure 7. Computed relative wave amplitude and phase function when the incident wave angle is Oio = 180" 

Angle around island 

Figure 8. Computed relative wave amplitude and phase function when the incident wave angle is Bin = 270" 

the incident wave period. The incident wave angle is assumed to be parallel to the breakwater, as 
shown in Figure 14. Figures 15 and 16 illustrate the comparison between computed and observed 
results. The abcissa represents the incident wave period and the ordinate is the relative wave 
amplitude. From these figures, it can be seen that the computed results obtained by the present 
method agree with the observed results. 
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Figure 9. Finite element idealization for a rectangular harbour 

(b)  
Figure 10. Water depth diagram for a rectangular harbour 

CONCLUSION 

A new combinative method based on the boundary-type finite element method has been presented 
to study water surface wave problems. The key features of this method are as follows. The 
variational function to be minimized can be formulated only by the line integral of an element, since 
the interpolation equation which satisfies the Helmholtz equation in each element is used in this 
paper. It follows that the discretized matrix equation can be formulated only by the calculation of a 
line integral. The boundary-type finite element is the C ,  non-conforming element; however, the 
computed results are in better agreement with the analytical solution than is the conventional 
combinative method using a conforming linear element. The convergence of the boundary-type 
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finite element has been ensured by many numerical tests in References 22 and 23. 
The computed results obtained by the present method have been compared with existing 

analytical, experimental, observed and other numerical results. From these comparative studies, it 
is concluded that the present method based on the mild-slope equation is a useful and effective tool 
for studying water surface wave problems. 
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